Is the inverse leafing phenology of the dry forest understory shrub Jacquinia nervosa (Theophrastaceae) a strategy to escape herbivory?
نویسندگان
چکیده
In the dry forest of Santa Rosa National Park, Costa Rica, the understory shrub Jacquinia nervosa presents an inverse pattern of phenology that concentrates vegetative growth and reproduction during the dry season. In this study, we tested the "escape from herbivory" hypothesis as a potential explanation for the inverse phenological pattern of J. nervosa. We monitored leaf, flower and fruit production in 36 adult plants from October 2000 to August 2001. Leaves of six randomly selected branches per plant were marked and monitored every two weeks to measure the cumulative loss in leaf area. To analyze pre-dispersal seed predation we collected 15 fruits per plant and counted the total number of healthy and damaged seeds, as well as the number and type of seed predators found within the fruits. Leaf, flower, and fruit production occurred during the first part of the dry season (end of November to February). The cumulative herbivory levels were similar to those observed in other tropical dry forest tree species that concentrate leaf production during the wet season, and were concentrated on young leaves, which lost an average of 36.77 % of their area (SD = 34.35 %, N = 195). Chewing beetles of the genus Epicauta (Meloidae) were the most important herbivores. In mature leaves, most of the damage was caused by the beetle Coptocycla rufonotata (Chrysomelidae). Fruits took 4 months to develop during the dry season (January-March 2001) but continue increasing in size well into the first 3 months of the wet season (May-July). Average seed number per ripe fruit was 9 (SD = 5, N = 500). Seed predation in mature fruits was 42 % (SD = 47 %, N = 122). Most seeds were damaged by moth larvae of the family Tortricidae. Only 3 % of the flowers became fruits. This was influenced by the low level of flower synchrony (0.38+/-0.26, N = 36 plants), but neither leaf synchrony (0.88+/-0.06, N = 36 plants) nor plant size influenced fruit numbers. The significant damaged produced by insect herbivores in young leaves, fruits, and seeds, as well as the low reproductive index observed in J. nervosa, shows that the inverse leafing phenology of this species is not consistent with the "escape hypothesis" since J. nervosa was considerably attacked during the dry season. Considering the strong seasonality of the tropical dry forest and the heliophyte character of J. nervosa, it is more likely that this phenological strategy evolved in response to seasonal fluctuations in light availability, light quality, and daylength.
منابع مشابه
Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae)?
In tropical dry forests most plants are deciduous during the dry season and flush leaves with the onset of the rains. In Costa Rica, the only species displaying the opposite pattern is Bonellia nervosa. To determine if seasonal changes in light availability are associated with the leaf and reproductive phenology of this species, we monitored leaf production, survival, and life span, as well as ...
متن کاملLeaf phenology in relation to canopy closure in southern Appalachian trees.
Leaf phenology varies markedly across tree species of temperate deciduous forests. Early leafing in spring may increase light capture and carbon gain prior to canopy closure, allowing saplings to survive in understory sites deeply shaded in midsummer. We quantified sapling leaf phenology for 18 tree species and seasonal variation in understory light availability at three sites along a ridge-slo...
متن کاملPhotographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers.
Phenology shows sensitive responses to seasonal changes in atmospheric conditions. Forest understory phenology, in particular, is a crucial component of the forest ecosystem that interacts with meteorological factors, and ecosystem functions such as carbon exchange and nutrient cycling. Quantifying understory phenology is challenging due to the multiplicity of species and heterogeneous spatial ...
متن کاملLeaf Phenological Characters of Main Tree Species in Urban Forest of Shenyang
BACKGROUND Plant leaves, as the main photosynthetic organs and the high energy converters among primary producers in terrestrial ecosystems, have attracted significant research attention. Leaf lifespan is an adaptive characteristic formed by plants to obtain the maximum carbon in the long-term adaption process. It determines important functional and structural characteristics exhibited in the e...
متن کاملPhenological Differences Between Understory and Overstory: A Case Study Using the Long-Term Harvard Forest Records
The timing of phenological events varies both among species, and also among individuals of the same species. Here we use a 12-year record of spring and autumn phenology for 33 woody species at the Harvard Forest to investigate these differences. Specifically, we focus on patterns of leaf budburst, expansion, coloration and fall, in the context of differences between canopy and understory specie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Revista de biologia tropical
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2006